
            IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  CCoommppuutteerr  SScciieennccee  &&  CCoommmmuunniiccaattiioonn  ((IISSSSNN::  00997733--77339911))  

                      VVoolluummee  1100  ••  IIssssuuee  11      pppp..  225500--225577        SSeepptt  22001188  --  MMaarrcchh  22001199            wwwwww..ccssjjoouurrnnaallss..ccoomm 

 
  
 

Page | 250 
 

A Faster Software Fault Prediction using White-Box Testing (LT) and 

Black-Box Testing (BVA) Techniques 
 

Seema Rani 
1
, Deepali Gupta

2 

Research Scholar, CSE, M.M.University, Sadopur , Ambala 

Associate professor, CSE, M.M.University, Sadopur , Ambala.                  

.          

ABSTRACT 

 

Software development plays a crucial role in today's world. The goal of software development is to 

create high-quality software. High-quality software possesses attributes like being fault-free, cost-

effective and reliable for end users. Testing the software after development plays a significant role 

in developing defect-free and quality software but consumes almost half the time and resources 

allocated to develop it. To reduce development time and cost, efficient allocation of resources is 

necessary, and software defect prediction models can help by giving prior knowledge about 

defective modules. Throughout the testing process, test cases are executed to detect faults in the 

software. The purpose of testing software is to run the program to uncover errors. In the software 

development life cycle, testing is a vital activity for finding all defects. Software testing is essential 

for minimizing faults in existing software products. Thorough and successful testing reduces overall 

system costs. Software companies hire testing and quality assurance staff to perform testing 

activities. One of the main topics of investigation is software defect prediction. A key component of 

software engineering is software fault prediction. It lowers expenses overall, time, and effort makes 

a major contribution to the startup and profitability of the company by guaranteeing client 

happiness. Over the years, this area has drawn a lot of academics in an effort to raise the general 

standard of the program. To predict software faults, this research proposes testing using white box 

and black box testing techniques. Among different testing methods, loop testing from white box 

testing and Boundary Value Analysis from black box testing are selected in this research for 

Software fault prediction. 

Keywords: Software Fault prediction techniques, Software Testing, Software quality, Loop Testing, 

Boundary Value Analysis, Software defects. 

I INTRODUCTION  

The practice of identifying potential defect-prone areas in a software system is known as software 

fault prediction [1]. By using software fault prediction models early in the software lifecycle, 

practitioners can concentrate their testing resources so that components that have been recognized 

as "prone to defects" receive more thorough testing than other components of the software system 

[2]. This result in lower labor expenses during development and less work required for maintenance 

[3]. 

 Software fault prediction is the most important method which has been researched extensively over 

the years. Software fault prediction helps in cost efficiency and time efficiency that adds to the 

quality assurance the quality of software [4]. Faults can occur due to any design issue, functionality 

error or code error.  A crucial step in software engineering is software defect prediction, which 

helps to increase software quality and assurance while saving money and time. Software defect 

prediction models indicate if a defect is there or not. Because software defect prediction allows for 

distinct software quality and monitoring assurances to be increased, many researchers have been 

motivated to provide alternative models with a project or cross-project. There are two ways to build 
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a software defect prediction model: supervised learning and unsupervised learning. The problem 

with supervised learning is that the software defect prediction model cannot be trained without prior 

data or known results. Even when the model's training within the project is done correctly, other 

new ventures will find it challenging to comprehend. To solve the difficult challenge while training 

on a new project, researchers can use a variety of publicly available datasets, such as PROMISE, 

Eclips, and Apache, for free. A key phrase for software dependability is software testing. Testing 

gives the program the true structure and validity it needs to function well in operational settings. By 

using various software testing techniques, error detection and error correction need to be performed. 

Various methods need to be found to decrease the time and effort of software testers. Software 

testing's primary objective is to systematically test the program under controlled circumstances in 

order to confirm its quality. A further objective is to ensure that the program is accurate and 

comprehensive, and lastly, it discloses faults that have not yet been found [5]. In software 

engineering, software testing is a broad area, which includes specification, design and 

implementation, maintenance, process and management issues as well. The goal is to evaluate 

research on comparing the efficacy of defect prediction approaches in software testing. The 

Research paper is organized as: Section I covers introduction part. Section II describes the software 

fault prediction process. Section III explains software testing metrics. Section 1V explains the role 

of testing in software fault prediction. Section V outlines the methodology and results. Section VI 

concludes the paper.  

II SOFTWARE FAULT PREDICTION PROCESS  

 

A Fault refers to a problem or imperfection that causes software to be unable to execute its intended 

job properly. Faults lead to failures in software systems. Fixing faults in later stages of the software 

development life cycle requires additional time and rework. This rework also incurs extra costs. 

Therefore, identifying faults early in development is crucial to reduce cost [6]. By more effectively 

concentrating quality assurance efforts on particular modules, early problem identification can help 

to enhance the software quality. 

 

 
Figure 1: Software Fault Prediction Process(SFP) 

 

An overview of the software fault prediction mechanism is provided in Figure 1. Above figure 

illustrates the three key elements of the SFP process: performance evaluation metrics, faulty 
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datasets, and SFP methodologies. First, information about software faults is gathered from software 

project repositories that hold information about the project's development cycle, including source 

code. Next, data regarding errors is obtained from the related error repositories. Then information 

about faults is gathered from the associated fault repositories. Next, the values of several software 

metrics—like cyclomatic complexity and LOC—are obtained; they act as independent variables. 

The dependent variable is the necessary fault information for the fault prediction, such as quantity 

of faults (both faulty and non-faulty). Various Statistical methods are typically employed in the 

construction of fault prediction models. Pre-processing is used to scale the data, eliminate noise, 

and extract features [7]. Applying to every kind of defect prediction model is not required [8]. New 

cases are produced to train the defect prediction model once the cases have undergone pre-

processing. Finally, a variety of performance evaluation metrics, including accuracy, precision, and 

recall are used.  

III SOFTWARE TESTING METRICS  

 

To have an efficient and successful software quality assurance process, developers often need to 

assess the quality of the software artifacts that are currently under development. For this reason, 

software metrics have been introduced. Metrics allow for the quantitative analysis and quality 

assessment of software projects. A metric uses numbers to indicate how much of a certain attribute 

a system, system component, or process possesses. Software metrics are measurements of certain 

features or attributes of software. Software metrics are frequently employed to assess a program's 

capacity to accomplish a predetermined objective. Software testing metrics are measurable 

measures of the process's advancement, effectiveness, productivity, and general state [9]. Metrics 

for software testing are used to make the process of software testing more effective and efficient. 

Each software metric is associated with specific functional aspects of the software project, such as 

coupling, cohesion, inheritance, code modification, etc., and is generally used to reflect an external 

quality trait, such as fault-proneness, reliability, or testability. Three categories comprise software 

testing metrics: 

 

1. Process Metrics: Process metrics describe the features and functioning of a project. The 

Software Development Life Cycle (SDLC) process cannot be improved or maintained without these 

components. Supervisors can gain important insights into the effectiveness of the process by closely 

examining these indicators, which will help them make decisions that will improve the process's 

overall performance. This in turn makes it easier to create new policies and tactics intended to 

maximize the various stages of the process.  

2. Product Metrics: Product metrics describe a product's dimensions, functionality, quality, and 

complexity. By leveraging these features, developers can raise the caliber of their software 

development. By using these measures, businesses can assess factors like customer satisfaction, the 

frequency of faults, the quantities of their products, and other relevant elements. This evaluation 

supports improvements and raises the product's overall quality by helping to understand its benefits 

and shortcomings.  

3. Project Metrics: Project metrics are employed to evaluate the overall caliber of a project. It is 

used to calculate expenses, productivity, and fault in a project, as well as to estimate resources and 

deliverables. Project managers may keep an eye on the project's development, spot any obstacles, 
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and put the right plans in place to make sure it succeeds by analyzing these indications. These 

metrics enable better project outcomes and well-informed decision-making by offering useful data 

on the effectiveness and competence of resource allocation, time management, and cost control. 

 

IV TESTING IN SOFTWARE FAULT PREDICTION  

 

Software fault prediction has been an important part of Software Engineering for over 30 years. It is 

frequently used to find defective software modules using software measurement data and is an 

essential part of software quality assurance. In today's context, software development is highly 

versatile and generates enormous datasets, so detecting faults early on is essential. It's estimated that 

identifying one third of software faults early can significantly reduce rework. It's necessary to find 

similarities between faults in newly developed software and existing faults. There are many 

software development methods that follow a general flow - starting with problem definition, 

requirements gathering, system design and finally implementation. Software testing is carried out to 

confirm and validate the created product after development. Automated or manual testing is 

possible [10]. Since manual testing is a time-consuming and slow process, it is done statically. 

Early in the life cycle is when this testing is conducted. Walkthrough, Informal Review, Technical 

Review, and Inspection are some examples of several manual testing techniques [11]. Testing is 

completed in automated testing by having the tester run the script on the testing tool. Automated 

testing is also known as dynamic testing. Correctness testing, performance testing, reliability 

testing, and security testing are other subcategories of automated testing. White box testing and 

black box testing are two additional categories for correctness testing.  
 

 White box testing:  White box testing is an extremely efficient method of finding and fixing 

issues since it allows for the early detection of bugs, mistakes, defects, or faults before they 

become problematic. This approach can be succinctly described as software testing with 

program coding and internal structure understanding. A tester must be completely 

conversant in source code. White box testing's drawback is that it wastes resources because 

it requires a lot of resources to do for major program types [12]. Condition testing, data flow 

testing, basic path testing, and loop testing are further subcategories of white box testing. 

 Black Box testing:  Testing software using output requirements alone, without any 

understanding of the program's internal structure or coding, is known as "Black Box" 

testing. Here, the users are unaware of internal functioning of the software used to produce 

the results. White box testing is further categorising into equivalence class partitioning, 

boundary value analysis, cause effect, comparison testing, model-testing.         

V METHODOLOGY AND RESULTS 

In this research, we used loop testing technique from white box testing and boundary value analysis 

testing technique from black box testing on a selected data to compare the effectiveness of both 

testing techniques in terms of fault prediction. A white box testing method called loop testing 

concentrates on the reliability and validity of loop constructions. A white box testing method called 

loop testing concentrates on the reliability of loop constructions. Software or programs with loops 

are easy to test as long as there are no dependencies between the loops or between the loop and the 

code it contains. Loop Testing can fix the loop repetition issues, reveal performance and identify 

loops initialization problems. From black box testing, boundary value analysis (BVA) tests the 

application at both the higher and lower value limits that are anticipated. Boundary value analysis 

focus on the boundaries of equivalence classes, as boundary values often reveals faults. In BVA 

testing test cases choose boundary values that are close to them like just below them or just above 
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them. Boundary conditions are crucial for testing since defects can be introduced at the boundaries 

relatively quickly. We compare the performance of software prediction. The experiments were 

performed using MATLAB-R2015 software. We had compared the prediction of faulty n non faulty 

files over 350 different data files from kaggle. Data scientists and machine learning professionals 

can connect online with kaggle. Users can look for and exchange data sets, conduct research, and 

build models in an online data science environment with kaggle. This dataset is referred to as a 

public dataset because it is readily accessible. Each piece of data includes information about faults 

and is made up of several program instances and modules. Every dataset included biased 

information with both faulty and non-faulty examples. For the purpose of predicting software 

defects, the data is chosen at random. The main objective of research is to find faulty and non-faulty 

data by using the Loop Testing and BVA techniques. To analyze the effectiveness of white box and 

black box testing techniques in terms of fault prediction, we had compared the both techniques loop 

testing and boundary value analysis.  

A matrix with the counts of cases sorted by the actual and expected class is called a confusion 

matrix. It is a 2 × 2 matrix for the classification problem (as shown in Table 1). The performance of 

the classifier can be assessed using the confusion matrix and the derived metrics; typical indicators 

are as follows: 

 

Table 1: Confusion Matrix   

 

Actual/Predicted Negative Positive 

Negative True negative (TN) False positive(FP) 

Positive False negative (FN) True positive(TP) 

 

Recall is the percentage of real positive class instances that are appropriately classified as belonging 

to the positive class. The fraction of accurately predicted fault-free modules is measured by recall. 

  

Recall = 
  

     
 

Precision is the percentage of positive class instances that are in fact in the positive class as 

expected. The precision metric computes the percentage of accurately identified faulty modules 

among the fault-prone modules. 

 

 

Precision = 
  

     
 

 

The fraction of real negative class instances that are mistakenly allocated to the positive class be 

represented by the term false positive rate (FPR). The percentage of fault-free modules that are 

projected to be faulty is known as the false positive rate. 

FPR = 
  

     
 

 

The false negative rate is the ratio of a faulty module that is projected to be non-faulty to the total 

number of modules that are predicted to be faulty. 

. 

 

FNR = 
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Accuracy is the percentage of instances that are correctly classified. The likelihood that fault-prone 

modules will be appropriately categorized is measured by accuracy. However, it offers no 

information regarding modules that are mistakenly categorized as fault-free. 

 

Accuracy= 
     

           
 

For analysis different files were uploaded. All thesis files are of different sizes. We had used feature 

vectors like loc, if count, class count, clause count etc. 

1.                                // Total number of features in the file 

2.                              // Lower bound of loop  

3.                              // Upper boundary of loop 

4.                 
                               

                 // Test 

condition  

5.              // Non faulty if satisfied  

6.      

7.           // Faulty if not satisfied  

                   
          

 
   

 
  (1) 

8.                               

9.                                

10.                                

11.                 
                              

               

12.             

13.      

14.          

                              
               

 
   

 
  (2) 

A total of 100 test cases has been set and evaluated for the processing of both loop and 

boundary value testing. A total of 350 files were tested for every test case and hence a total 

             units of tests were implemented to identify whether the file is faulty or not. 

The evaluation has been made in such a manner that out of 100 cases, if the majority says that 

the file passes the test case, then the file is assumed to be non-faulty else the file is set to be 

faulty. This method is adopted because there is no prior ground truth available for the 

processing. If there is any ground truth, then the analysis has not to be radical as there is 

something already present for the processing. This part is done in order to process the data for 

the training of the machine learning mechanism. Following figure shows the result structure of 

all training mechanism. 
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Figure 5: The result structure of all training mechanism. 

 

 

 
 

Figure 6: Comparison of Count of faulty files and non-faulty files in terms of fault prediction 

predicted by Loop testing and BVA. 
 

In above figure green and blue lines shows the faulty files and non-faulty files predicted by loop 

testing. A Black and Red line shows the faulty files and non-faulty files predicted by Boundary 

value analysis (BVA). 

 

From the above calculations, it has been observed that loop testing technique for software faults 
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prediction in terms of count of faulty and non-faulty files is higher than boundary value analysis 

testing techniques. We also analyzed that fault prediction and fixing fault in the requirement stage is 

less as compared after delivery stage. So finding the fault in early stages is necessary to reduce the 

cost.   

 

7. CONCLUSIONS 
 

White-box testing and black-box testing are the two main testing approaches are used in this 

research. Software testing is carried out throughout the programming improvement cycle and is also 

done to construct quality programming. It is critical approach for the refine and evaluation of 

product framework standard. It is very impractical to discover all the mistakes in the program. 

Software Testing can never be tastefully finished in light of the information area from client. 

Testing recognizes the mistakes in framework however don’t exhibit framework is blunder free. 

Testing is most basic piece of the Software development Life cycle. Testing is a process to evaluate 

the quality of software. To test any software different types of testing are used. There is scope for 

automation in the activities of testing but tester’s experience is important for successful testing. In 

this research, we have compared the both testing techniques Loop testing (white box testing) and 

boundary value analysis (black box technique) for software fault prediction. By applying both 

Software testing techniques i.e. Loop Testing and boundary value analysis testing on different data 

files, it has been observed that loop testing technique for software faults prediction in terms of count 

of faulty and non-faulty files is higher and better result  than boundary value analysis testing 

techniques. The obtained result supports our claim of the importance of comparison. 
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